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AN INTRACTABILITY RESULT FOR MULTIPLE INTEGRATION 

I. H. SLOAN AND H. WOZNIAKOWSKI 

ABSTRACT. We prove that the problem of multiple integration in the Korobov 
class Ead is intractable since the number of function evaluations required to 
achieve a worst case error less than 1 is exponential in the dimension. 

1. INTRODUCTION 

In this note we consider the approximation of integrals over the d-dimensional 
unit cube, 

(I.-l) If = fj f(XI,.. ,Xd)dXl .dXd=J f ()dx, 
[o,I]d , [,I]d 

under the assumption f E E,,d, where, for arbitrary a > 1, Ead is the set of 
complex-valued functions in L1 ([0,1] d), whose Fourier coefficients satisfy 

If (h)I < ( (hi .hd)a 

Here h = (h1, h2, ... , hd) with integers hj and 

f (h) = f (x)e-2ihxdx 
[o,I]d 

h X=Z . I hjxj, and hj = max (1, Ihj). 
Note that a function f belonging to Ead necessarily has a continuous 1-periodic 

extension, since the Fourier series for f E Ead is absolutely convergent: 

S f(h)eh ? (hi .hd) < X 
hcZd hCZd 

Our aim is to show that in the worst-case setting the integration problem is 
intractable: that is, to achieve a given error I, - < 1, for all f E Ead, the amount 
of information required is exponential in d. More precisely, we prove that the 
minimal error of any quadrature rule that uses N < 2d points equals 1. The bound 
on N is sharp, since, as we shall show, the error of a certain quadrature rule that 
uses N - 2d points may be made arbitrarily small by taking oa sufficiently large. 
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The class Ed is standard for the particular class of quadrature formulas known 
as lattice rules (for a survey see [7]). The implications of the intractability result 
for lattice methods are considered briefly in Section 3. 

Our proof technique is based on an, argument which has been already used by 
Sharygin for a lower bound result for the class Ed, see [6]. An English version of 
Sharygin's proof can be found in [4], in particular see Theorem 7.17. 

2. THE INTRACTABILITY RESULT 

A quadrature rule approximating (1.1) is a linear functional of the form 
N 

Qf = Q(d, N a, wt)f Wjf (tj) 
j=1 

where the 'weights' w := (WI,... ,WN) and 'points' t :=(tl,... ,tN) satisfy 

Wj EC(, tj E [O. j)dj for j = 1, ... ., N. 

Without loss of generality we can assume that t1,... , tN are distinct points. The 
worst-case error for the quadrature rule Q = Q(d, N, W, t) for the class Ed is 

Pa(Q) = Pa(d, N,Wt) := sup{jQf-IfI : f E Eacd}* 

Since we are interested in a lower' bound for Pa (Q), we define 

e(a, d, N) := inf {Pa (d, N, W, t): W E CN, t E ([O, I)d)N}. 

It is an elementary fact that 

(2.1) e(a,d,N) < 1, 

since by taking w1 = W2 = = WN = 0 we obtain 

Pa (d, N, 0, t) = sup {|IfI : f E Ea,d} = SUp {If(?)M f E Ea,dc} = 1- 

The following theorem, which is our main result, states in effect that if N < 2d 

then, in the worst-case setting and for the class Ea,d, the error is as bad as it can 
be, and the quadrature rule Q 0 0 is a best possible rule. 

Theorem 1. If N < 2d, then 

e(a, N, d) = 1. 

Proof. Let N < 2d, and suppose that points t = (t1,... ,tN) and weights w = 

(WI *... , WN) are given. The theorem is proved by constructing a function g E Ea,d, 
depending on t and W, such that Ig = 1 and Qg = 0. From this it will follow that 
Pa (Q) > IQg-IgI = IIgI = 1. Since this holds for any choice of points t and weights 
W, it follows that ec(a, N, d) > 1, which together with (2.1) proves ec(a, N, d) = 1. 

To accomplish the construction, let Bd := {0, Il}d, and define g to be a trigono- 
metric polynomial of the form 

(2.2) g(x) = 0(x) E ahe2Tihx 
hEBd 

where {ahE C : h E Bd} is a non-trivial solution of the linear system 

(2.3) E ahe 2ih tj = 0, j = 1, ... , N) 
hEBd 

and 0 is a trigonometric polynomial which is yet to be specified. A crucial point 
in the proof is that, because the homogeneous linear system (2.3) has 2d unknowns 
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but fewer than 2d equations, a non-trivial solution of (2.3) certainly exists. Let 
h* E Bd be such that Jahl <? ah* I for h G Bd. We scale our non-trivial solution of 
(2.3) so that 

Jahl < I for h E Bd and ah* = l. 

It follows from (2.2) and (2.3) that 

g(tj) = 0(t) i ahe23-ih t3 0, j = 1, ... , N, 
hcBd 

from which it is clear that Q(d, N, w, t)g = 0. Now we choose 

0(x) := e-27ih* x 

so that 

(2.4) g(x) = E ahe2tifhh)x. 
hcBd 

Clearly 
Ig = 9(0) = ah* = 1. 

On the other hand g given by (2.4) is a trigonometric polynomial of degree < 1 in 
each component of x, since for h, h* E Bd we have 

hj- = 0,1 or -l for j = 1,..., d. 

This implies 

(hi-hh) (h2-h*) .(hd-h*) = 1 for h, h* E Bd. 

It therefore follows, since Jahl < 1, that g E Ead, and so the theorem is proved. EL 

Remark 1. Theorem 1 remains valid if we permit more general quadrature rules. 
Namely, for fixed points tj we may approximate the integral If by 
q (f (t) , ... , f (tn))) where q$ is an arbitrary nonlinear mapping, q$: Rn - R. Since 
the class Ead is convex and symmetric (i.e., f E Ead implies that -f E ad) we 
may apply Smolyak's theorem, see e.g., [9] p. 76. This theorem states that the 
mapping q$ which minimizes the worst-case error is linear. For linear q$ we have just 
proven that the error is at least one. 

We may also permit adaptive choice of points tj. That is, assuming that the 
points t1, . . ., tj-I are already chosen and the function values f(ti), . . ., f(tj-1) are 
already computed, the next point tj may depend arbitrarily on f(ti),... , f(tj1). 
By Bakhvalov's theorem, see e.g., [9], p. 59, the worst-case error of arbitrary quadra- 
ture rule that uses adaptive points tj cannot be smaller than the minimal worst-case 
error of linear quadrature rules that use non-adaptive (fixed) points. Again the lat- 
ter error is at least 1. Hence, Theorem 1 also holds for adaptive choice of points 
tj. 

3. LATTICE RULE RESULTS 

Our purpose in this section is merely to mention some known lattice rule results 
that cast an interesting light on the result in Theorem 1. In particular, we will see 
that the condition N < 2d in the theorem cannot be improved, and indeed that the 
behaviour of e(ae, N, d) changes dramatically when N reaches 2d* 



1122 I. H. SLOAN AND H. WOZNIAKOWSKI 

A lattice rule is an equal-weight rule of the form 

N 

where 
tl,... ,tN}L=n[0,1)d, 

and L is an 'integration lattice'; that is to say, L is a geometrical lattice containing 
Zd as a subset, where a geometrical lattice is a discrete subset of Rd that is closed 
under addition and subtraction. It is known [8] that if Q is a lattice rule that 
corresponds to an integration lattice L, then 

Qf -If = f(h) for f EaEx,d, 
hEL', 

h:AO 

where L' is the 'reciprocal lattice' of L, 

Ll := {h E Rd X* h E 2, Vx E L} cd. 

It follows in turn that 

(3.1) Pa(Q) := sup {JQf - IfI : f Ecad} = (hl - hd 

hcL0 h:AO 

One of the simplest of all lattice rules is the nd-point product-rectangle rule 

In-1 n-1 n-1 kiF k2 kd) 

k1 =0 k2 =O kd=O 

For this rule we can easily compute Pa(Rn), by using the fact that the correspond- 
ing integration lattice is L = (n-l2)d, from which it follows that L' - (nZ)d. 

Specifically, from (3.1) we find 

(3.2) Pa (R) 
d 

I 1+ 2fi(a) 1 

where ((x) is the Riemann zeta function, 
00 

((x) = Ei-XI for x>1. 
i=1 

In particular, on setting n = 2 we find 

(3.3) Pa (R2) = (1 + ((a)/2a-1 )d - 1. 

In the product-rectangle rule with n = 2 we have N 2d, thus this example only 
just misses being covered by Theorem 1. On the other hand, we note from (3.3) 
that 

Pa (R2) - 0 as oa 00, 

from which it follows that 

e(a,,2d,d) ) 0 as o 0-?ox. 

And since e(a, N, d) is clearly non-increasing in N, it follows in turn that 

(3.4) e(a,N,d) -0 as ar - for all N > 2d. 
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The last result stands in striking contrast to the result from the theorem that 

e(ca,N,d) = I V a > 1 if N < 2d. 

This result (3.4) shows that the condition N < 2d in the theorem cannot be weak- 
ened, at least for large values of ar. 

The product-rectangle rule is not usually thought of as an interesting lattice rule, 
because lattice rules are traditionally designed to have good asymptotic convergence 
properties as N x oc (for fixed d.) By this test the nd-point product-rectangle 
rule performs poorly, since (3.2) gives the inferior asymptotic result 

Pa (Rn) = O(n-a) = O(N-a/d). 

Much greater interest attaches usually to the 'method of good lattice points', a 
class of lattice rules of the form 

N-1 

(3.5) Q(Z)f = Sf ({ij})' 
j=O 

where z E 7d is a well chosen integer vector, with no nontrivial factor in common 
with N, and {x} for x E Rd means that each component of x is to be replaced by 
its fractional part in [0,1). 

The classical theorems of the method of good lattice points (see, for example, 
[5] or [7]) assert the existence of z = z(N) such that 

(log N)Q(aed) 
Pa (Q(z)) < c(c, d) - 

N)e 

for some positive functions c and 3. Usually, 3(ca, d) is of order d. This result 
indicates an impressive rate of convergence for large N, but asymptotic bounds 
of this kind either do not give explicit values of c(c, d), or do not provide useful 
bounds for smaller values of N. Among the known explicit bounds, the authors 
of [2] assert that for prime values of N up to approximately 10d the bound in the 
following theorem is as good as any known bound: 

Theorem 2. For N prime there exists a lattice rule Q(z) of the form (3.5) such 
that 

(3.6) 

Pa(Q(Z)) < Ma - (1 +a24()) + N N ( 2(1 IN )(c()) _ 1. 

Here Ma is just the mean of Pa(Q(z')) over all integer vectors z' with components 
z. satisfying -N/2 < z < N/2, z/ 7 O. 

An analogous result for composite N is given in [1]. 
The following proposition shows that if N 2d and N > 24(ca) + 1, then the 

bound in Theorem 2 for the method of good lattice points is larger (and hence less 
good) than Pa for the humble 2d-point product-rectangle rule, given by (3.3). 

Proposition 1. If N = 2d > 24(ca) + 1, then 

( + 2((ca))d N- 1 2(1-N1a)((a) d 1((a) d 

N + N N -1/I 1a> j1+2a 1. 
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Proof. Because N > 2C(a) + 1, we see that 

1- 2(1 - N 1)((a) >1- 2((a) > 0, 
N- I N-1 

from which follows 

(I + 2C(a))d N-i (I 2(1-N )((a) -1 
N + N Nla)()) 

> (1 + 2_ () 1 = (- + ((a))d_1, 
N 2 

since N = 2d. The result now follows from the inequality 

1 + ((a) > I + ((a) 
?1+2CX1' 

which is trivial for a > 2, and proved for all a > 1 in Proposition 4, Part (i) of 
[3]. ? 

The fact that P, for the 2d-point product-rectangle rule is smaller than Ma, 
which is the mean value of Pat for prime-order rules of the form (3.5), is an echo of 
a result proved in [3] for 2dk-point rules which are '2d-copies' of k-point rules of the 
form (3.5) with k prime. There it is shown that the mean Pa for such 2dk-point 
copy rules is smaller than the mean M, for rules of the form (3.5) with N 2dk. 
The 2d-point product-rectangle rule is the 2dcopy of the 1-point rule Qf =f (), 
thus Proposition 1 in effect extends the result in [3] on the merit of 2d-copy rules 
to the case k = 1. 
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